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Abstract 1.1 Previous Work

Robots are used in inaccessible or hazardous environments in

order to alleviate some of the time, cost and risk involved in

preparing men to endure these conditions. In order to per-

form their expected tasks, the robots are often quite complex,

thus increasing their potential for failures. If men must be sent

into these environments to repair each component failure in the

robot, the advantages of using the robot are quickly lost. Fault

tolerant robots are needed which can effectively cope with fail-

ures and continue their tasks until repairs can be realistically

scheduled. Before fault tolerant capabilities can be created,

methods of detecting and pinpointing failures must be perfected.

This paper develops a basic fault tree analysis of a robot in order

to obtain a better understanding of where failures can occur and

how they contribute to other failures in the robot. The resulting

failure flow chart can also be used to analyze the resiliency of

the robot in the presence of specific faults. By simulating robot

failures and fault detection schemes, the problems involved in

detecting failures for robots are explored in more depth. Future

work will extend the analyses done in this paper to enhance

Trick, a robotic simulation testbed, with fault tolerant capabil-

ities in an expert system package.

1 Introduction

In hazardous environments or environments which arc not read-

ily accessible to man, robots must be able to efficiently adapt

to failures in both software and hardware in order to continue

working until the problem can be realistically repaired. Before

a robot can try to cope with a failure, however, it must first

be able to detect and pinpoint the problem. This paper devel-

ops a basic fault tree analysis of robots in order to obtain a

better understanding of where failures can occur and how they

contribute to other failures or lindtations in each robot. The

resulting flow chart style picture of failures in a robot can also

be used to analyze the resiliency of the robot in the presence of

specific faults. Once a failure has been detected, the robot can

reorganize its view of its internal structure in such a way as to

hide or isolate the fault so the robot can conlinue working. The

focus of this research is on filming real-thne fault detection and

fault tolerance methods which maintain as much of the robot's

functionality as possible while not requiring that redundant or

extra parts be added to the robot.

1.1.1 Redundancy Based Fault Tolerance

Previous work on fault tolerance in robotics has concentrated on

dealing with faults in one specific part of the robot (mechanical

failure in the motor, kinematic joint failure, etc.) with only to-

ken thought going to the more critical, systemwide effect of the

failures. Relatively little focus has been given to the question of

how to detect failures in robots. Previous research tends to con-

centrate on fault tolerance algorithms, especially those schemes

which rely on duplicating parts such ms joint motors [15,19] for

their fault tolerant abilities. These redundancy based schemes

are similar to several computer fault tolerant Mgorithms which

are also based on redundancy of parts. One common computer

fault tolerant algorithm is Triple Modular Redundancy (TMR)

in which three processors all work on the same problem and

compare their results. If one of the processors is faulty and its

result does not agree with the results of the other two proces-

sors, the faulty processor is voted out of the final decision and

the correct result is passed on to the rest of the system. This

fault tolerance scheme fails, however, if more than one of the

processors is faulty. Duldication of physical parts provides a

backup in case the element performing the work fails. Redun-

dancy of parts can also provide a useful means of checking to

see if a component is in error.

For tile equivalent redundancy based robot fault tolerant al-

gorithms, two motors have been placed in each robot joint to

provide a backup in case one motor stalls, runs away, or be-

gins free-spinning. The fault tolerant advantages of reduudancy

have also led to adding extra paralkd structures, such as seven

legs when only six are needed, in order to allow many differ-

ent configurations in the presence of a failure. Previous work

by Tesar, et al at UT, Austin [15] and independently by "Wu

[19] with Lockheed at Johnson Space Center have explored the

aforementioned lnethod of duplicating nlotors. Two motors in a

joint work together so as to provide one output velocity for the

joint. When one of the motors breaks, the other one takes over

the faulty motor's functions. The faulty motor must be isolated

from the system or the second motor must be able to adjust its

output to account for any transieuts introduced to the system

by the failed motor. If the robot is performing a time-crilical

or delicate task, fault tolerauce must allow the robot to get a

run-away motor under control quickly before any dalnage to the

environn/ent or the robot occurs.
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1.1.2 Structure-Independent Fault Tolerance

Many useful robots have already been created. In order to pro-
vide fault tolerance for these robots without redesigning them,

algorithms need to be developed that will utilize the advantages
of the existing structure and not require the addition of extra

motors, sensors, or other components to the robot [16]. These

algorithms should be easily adaptable to most robots regardless
of the robot structure.

To avoid adding redundant parts for fault tolerance in comput-

ers, algorithms have been developed which reconfigure the data

or code in a computer system among the working parts after one

component has failed. Some computer fault tolerant systems

handle a fault by allowing a graceful degradation in function-

ality or speed. The literature speaks of time redundancy [,1] ill

which a computational cycle is lengthened so a fault-free part (or

parts) will have enough time to handle the tasks era faulty com-

ponent. Other systems use set-swltching or processor-switching

schemes [4] for reeonfiguration. In processor-switching, fault-

free components can be collected to form a basic subpart of the

configuration, such as a row of an array, until the full config-

uration is achieved. This method may, however, require many

extra interconnections between components. In software, check

bits and error correction codes help insure that data is success-

fully transmitted in tile system and allow a reconstruction of

the original data if a transmission line is faulty.

For robotics, however, little work has been done in developing

algorithms for accommodating a failure using only the available

physical parts. Many robots exist which do not ]lave redundant

motors or extensive sensors in tile joints. Duplicating motors

increases the size of the robot, the cost involved ill building it,

and the weight and inertia which affect the lobot controller. It
would thus be cost effective to find fault tolerance schemes that

do not rely on a specific robotic architecture to continue working

but reorganize the robotic algorithms in the controller or utilize

the self-motion capabifity of robots with redundant joints. In

order to develop these schemes, the advantages and capabilities

of a general robot architecture must be researched.

Maciejewski at Purdue University has quantified the effect of

joint failure on the remaining dexterity of a kinematically re-

dundant manipulator [10]. lie calculates an optimal configura-
tion of redundant arms to maximize the fault tolerance while

minimizing tile degradation of the system in the event of a faib

ure. IIis method currently only provides fault tolerance if the

robot is near this initial configuration and can try and arrange

its joints to mimic the fault safe configuration as close as pos-

sible. Robot controllers may further attempt to keep tile robot

arm in a configuration where the joints are arranged to stay

away from any possible singularities or uncomfortable positions

in case a joint fails during the operation. These studies do not

rely on adding extra motors or other components to the robot,

but they also do not explore what the robot controller must do

in order to utihze the remaining dexterity to continue its tasks.

This paper considers and analyzes systemwide failures (elec-

tromechanical, computer software/hardware, etc.) and their

inter-relationship via fault trees. We focus on developing fault

detection and fault tolerance schemes using only tile compo-

nents normally available to the robot. Previous work in fault
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Figure 1: Robe-MEDIC Fault Tolerance Environment.

tolerance forms a subset of our analysis, and our structure has

the additional advantage of allowing the best results from more

specific fault schemes to be embedded into our tree analysis,

1.2 Riceobot and Robe-MEDIC

This paper begins by specifically analyzing the fault trees of

the Rice University robot, the Riceobot, but the results apply

to most robots. The fault tolerant algorithms developed from

this analysis will be embedded into the CLIPS expert system

environment [6]. This NASA-developed public domain software

package is commonly used by government agencies arid is run-

ning on our computer systems.

The resulting expert system package, Robe-MEDIC (Robot Ma-

nipulator Error Detection and Intelligent Correction) will pro-

vide diagnostic assistance to the operator and wilt interface with

the control computer of the robot as shown in Figure 1. Robe-

MEDIC will be able to use the fault trees as a flow chart of

failures. Nodes in the trees will have some fault tolerant action

associated with them that veil] allow the robot to take advantage

of inherent backup or Mternate paths charted by the fault tree.

By maneuvering around tile trees, Robe-MEDIC will perform

fault tolerant recovery actions as a sequence of these smaller,

simpler actions.

1.3 Fault Detection Simulator and Trick

In addition to the fault tree analysis, we are examining fail-

ures and testing fault detection schemes using a simulation of

a generic four link, planar robot. We will be integrating the

concepts derived from the simulator into Trick Ill, a robotics

software testbed developed at NASA Johnson Space Center by

Leslie J. Quiocho and Robert Bailey.

The Trick software package already contains information to

model the seven-joint Robotic Research Arms, the Space Shut-

tle RMS, and the full Riceobot with base and two arms. Data

modules provided by Trick allow the user to build customized

robots with various types of sensors, joints, and links. Our re-

search is expanding the capabilities of the software to model

fault detection and tolerance algorithms. The flexibility of the

software allows the failure analysis developed in this paper to

be extended to a variety of different robots.
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Table I: Fault Tree Analysis Symbols

Symbol Function

AND gate All inputs required to produce output

event.

OR gate Any one input event causes the output

event.

Rectangle A malfunction which results from a

combination of fault events through

logic gates.

Diamond A fault event for which the causes are

left undeveloped.

Circle A basic fault event. This includes

O component failures whose frequencyand failure mode are known.

Triangle A suppressed tree. The tree is detailed

in another figure.

A Markov or semi-Markov model approach to probability anal-

ysis can also be developed based on the PAWS/STEM [3] and

CARE III [14] reliability analysis packages. These packages can

analyze simpler fault trees as well as Markov chains, but they

are not necessarily optimized to handle the simpler structures

[11]. These analysis tools were also not designed for robotics

and thus would not take advantage of some of the commonality

within robot structures. We will include some of the advan-

tageous aspects of using Markov models in our CLIPS-based

expert system, Robe-MEDIC.

A quantitative analysis provides a measure of the overall chance

of a complete failure for each robot. The structure provided by

the fault trees organizes the probabilities appropriately for the

robot system and provides a simple map of how the probabilities

relate to each other. Using the trees, robots of significantly

different origin and structure can be compared for fault tolerant

abilities and survivability. The integrated Robe-MEDIC expert

system will provide diagnostic capabilities by using the fault

trees and will alert the operator of an impending failure. It

can be used for off-line comparisons of robots or for suggesting

possible corrective actions to an operator and the low-level robot

controller during real operations.

2 Robotic Fault Tree Analysis

2.1 Analysis Technique

Fault Tree Analysis (FTA) is a deductive method in wlfich falI-

ure paths are identified by using a fauh tree drawing or graphical

representation of the flow of fault events [2]. FTA is a well-

known analysis technique often used in industry for computer

control systems and large industrial plants. Each event in the

tree is a component failure, an external disturbance, or a system

operation. The top event is the undesired event being analyzed

and, in this research, is the failure of the entire robot. The

events are connected by logic symbols to create a logical tree of

failures. Some of the basic symbols are explained in Table I.

Tim explanation of the FTA technique in [2] promotes a top

down development of the fault tree. The top event is broken

down into primary events that can, through some logical com-

bination, cause the failure at the top. This process is repeated

to deeper levels until a basic event or an undeveloped event is

reached. Some conditions or causes may be left undeveloped

if the probability that they will occur is small enough to be

ignored.

2.2 Failure Propagation/Probability Analysis

The information available in the fault trees may be enhanced by

a quantitative analysis of the failures. Failure rates are assigned

to each input event and propagated up tbe tree based on the

rules of the connecting logic gates. The output of an OR gate is

the sum of the inputs. The resulting probability of the combined

input events is greater than the probability of an individual

input event. The output of an AND gate is the product of its

inputs. The probability of all the events occurring is less than

the probability of any one occurring. The AND gate represents

a redundant measurement or capability and is more desirable in

the tree since the probability of a failure decreases through the

combination of lower level events.

2.3 Fault Tree Pruning

A suggested drawback of FTA is that there is no way to ensure

that all the causes of a failure have been evaluated [2]. The

designer tends to identify the iml)ortant or most obvious events

that would cause a given failure, tIowever, the events that are

not modeled normally have a low probability of occurring and

can be ignored or treated as a basic event without overly biasing

the analysis.

Several failures may also be interconnected creating lateral

branches or cycles in the fault tree. In some robots, one nrotion

at a joint may be coupled with another motion such that fail-

ure of either motion causes the failure of the other. It is also

difficult to determine the relationships between some failures.

For example, the failure of all the internal feedback sensors at

the elbow joint of a robot may make the robot blind to the

elbow's position. The elbow has not actually failed, but the

robot is unable to detect the results of any commands sent to

the elbow. Thus, the sensor lnalfunction does not contribute to

an elbow failure specifically but may cause a failure of the en-

tire robot. Relationships like these make the tree complex and

difficult to analyze. These problems can be overcome by work-

ing to simplify the tree. In the case of the coupled motions,

the two failures can be considered as one with twice as likely a

probability of occurring.

2.4 Riceobot Fault Trees

To provide a foundation for the analysis of general robots, we

have chosen to analyze the arm of the Rice University Riceobot.

The arm has eight degrees of fieedom: three motions in the

shoulder (z translation, pitch, and yaw), two motions in the

elbow (roll and pitch), and three motions in the wrist (roll,

pitch, and yaw). The results obtained from the Riceobot apply

to most general robots especially since the Riceobot has a wide

variety of commonly used link, joint, and motor arrangements.
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Figure 2: Top Level Fault Tree for Entire Riceobot.

Overall Robot Failure

Joint Failures

The Riceobot has two directly driven motions: the shoulder z-

direction motion and the wrist rollmotion (Figure 3). The fault

trees for these motions are quite simple since only the failureof

the motor plays an important role in the failureof the motion.

The other motions of the Riceobot depend on some form ofgear-

train assembly to allow the spatially separated motor to drive

the joint. Failure of the gear-train can be caused by basic events

as simple as a loosening of the chain or cable.

Motor and Sensor Failures

The probability of a motor failure is dependent on the type

of motor used. The Riceobot contains both brushless DC and

stepper motors. Each motor also has a gear box which may

fail due to gear slippage or wear. A power failure affects all

motors as well as any other electrically driven parts in the robot,

but each motor could lose power separately if its specific power

cables break. A motor failure could conceivably algo be the

cause of a sensor failure when sensors are mounted on the shafts

of the motors. Sensors are also affected by incorrect calibration

and external noise or vibrations (see Figure 4).

Several fault trees have been developed and a few are reproduced

in the following pages. The top event is obviously the failure

of the entire robot (Figure 2). The primary causes of a robot

failure are power failure, computer system failure, or a combina-

tion of failures of the joints. If the robot is fault tolerant, it can

withstand the failure of several joints. By stablizing the faulty

motion or joint in some manner (such as locking the joint), it

is possible that the other motions can still provide some func-

tional capability to the robot. This ability results in the AND

gate combining the joint failures in Figure 2 and decreases the

probability of a failure of the robot.

Computer System Failures

The computer system of the Riceobot consists of three main

parts: (1) amplifiers which read fi'om the optical encoders and

drive the motors, (2) servo control chips which store hlforma-

tion about the different motors and convert the desired angles

into currents for each motor, and (3) an on-board host computer

which is programmed in C and computes the desired angles for

the desired motions (Figure 5). These three parts each con-

tain at least one board filled with TTL chips, capacitors, power

transistors, resistors, and other analog and digital circuit com-

ponents. A failure of any one of these parts may not cause a

iI
/\

/ \ '-
-............:'_ I

Figure 3: Sub-Level Fault Tree for Wrist System.
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Figure 4: Sub-Level Fault Tree for Sensor System.

failure of the entire board; but if a board did fail, the robot

would be unable to function. The robot cannot withstand the

failure of all the serve controllers or all the amplifiers because

it would no longer be able to communicate with the joints.

Riceobot could then function in the presence of one sensor fail-

ure. Using the vision system for this task, however, increases

the load on the image processing software and may hinder the

system's abihty to perform its normal vision tasks.

Detecting a non-terminal failure in the computer system re-

quires some form of testing circuitry or the ability to poll com-

ponents to see if they are still alive. The IEEE standard 1149.1

Test Access Port may be incorporated into any VLSI chip on the

boards and could be used for active testing [9]. Radiation hard-

ened circuits [18] should also be used in the computer system.

Correction code bits can be used to check data transfers and

could identify a bus failure if the bits were consistently wrong.

2.5 Derived Riceobot Fault Detection

The qualitative analysis of these fault trees has proven useful in

pointing out some of the limitations of the Riceobot in regards

to fault detection and fault tolerance. With only one sensor at

each joint, the Riceobot represents the worst case scenario for

detecting sensor and joint failures. The only option available to

the fault detection software is to compare the sensed angles with

the calculated desired angles. After accounting for a predeter-

mined threshold to mask any precision errors in the calculations

or sensing equipment and possibly adjust for load effects, any

difference between the sensed and desired values must be con-

sidered the result of a failure. The computer is, however, unable

to differentiate between a sensor malfunction and an actual joint

failure due, for example, to a frozen motor. The computer must

therefore shut down the joint and proceed with fault tolerance

schemes based on a new model of the robot with fewer possible

motions.

Fault detection for the Riceobot could be improved using the

vision system. With the computer calculation and the sensor

reading, the additional joint angle information would help dis-

tinguish between a sensor error and a real joint failure. The

3 Robot Fault Detection

The fault trees give an indication of the interaction between fail-

ures in a system. The trees also provide a map of alternate paths

for detecting faults or bypassing failures. In order to expand on

this information and to show how modelling errors or other un-

certainties affect fault detection, we need to simulate the robot

and the fault detection algorithm. Because of the Riceobot's

lack of sensors and the complexity needed for its fault detec-

tion algorithm, we are initially simulating fault detection using

a computer modeled planar, four link robot [7]. The current

program will need to be expanded extensively for the Riceobot

and will be accomplished by implementing the fault detection

routine in the CLIPS expert system as part of Robe-MEDIC.

The robot consists of four cylindrical links connected end-to-

end. All joints are rotational and move in the same plane. A

simulated optical encoder and tachometer were added for each

joint. The fault tree for this robot is relatively simple (Figure 6),

We have not included the possibility of link breakage or global

power failure in the simulation. The motors are in essence direct

drive with no gear-trains and fail only in a locked mode. These

conditions pruned each joint subtree down from the complexity

of the Riceobot trees to an easily simulated failure situation.

It is interesting to note that it is the fault detection "software

which allows the joint to survive in the presence of a single sen-

sor failure thus creating the AND gate under each motor failure

in the tree. If both sensors at a joint fail, the host computer

is blind to that joint and the fault detection routine forces a

motor failure to prevent the joint from moving too far with-
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Figure 5: Sub-Level Fault Tree for Computer System.

out computer supervision. Thus, the fault detection algorithm
makes the dual sensor failure subtree a cause of the motor failure

events to protect a blind joint.

3.1 Fault Detection Simulator

The structure of the simulator is shown in Figure 7. The flow

of information is from the simulated host computer through the

robot and then the sensors to tile fault detection program and

finally back to the host computer. The host computer uses the

desired angles computed by a planner routine and the estimated

present position of the robot derived from the sensors to calcu-

late the torque necessary to move each link to its desired des-

tination. The controller is a standard proportional-derivative

(PD) computed torque type controller. The robot routine then

takes the calculated torques and determines the new position,

velocity, and acceleration for each joint. The optical encoders es-

timate the positions by truncating the value of each angle based

on each encoder's precision. The tachometers pass the velocities

through a first order filter based on a predetermined motor lag

time. The sensors are modules fi'om the Trick simulation pack-

age and represent our initial efforts at integration with Trick.

These estimates of the angles and velocities are passed into the

fault detection procedure which checks for failures. Then, the

procedure either passes to the host what it considers good esti-

mates of the position, velocity, and acceleration or signals the

motor of a joint with two bad sensors to shut down.

I Failure of Robot I

V
[Failure _

LMotor ,rt__.

_Failure of Failure oi [

L I
Figure 6: Four Link, Planar Robot Fault Tree.
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Figure 7: Fault Detection Simulator Flow Chart.

3.2 Host Computer Model

The simulated host computer uses the following dynamics equa-

tion as a model for the robot [7]:
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r = [M(0_)]_+ N(0_, _, (1)

where v.is the joint torque vector, [3I] is the inertia matrix, and

N is the Coriolis and centrifugal torque vector. The [M] matrix

and N vector are computed based on the estimated angles from

the sensors. Since the robot is planar, gravity is orthogonal to

the plane of motion and there are no resultant gravity torques

to consider. Friction is also neglected in this model.

The PD controller for this model becomes:

= [M(0)]{_ + [Kp](_ - 0_)+ [1¢D1(_ --0_')}+ X__(0_,_.(2)

The matrices [Kp] and [KD] are the position and derivative

gains, respectively, and are used to control tracking and steady

state errors by feedback control. For critical damping, the gains

become:

[KD] = 203, [Kp] = w2, (3)

where w is the natural fl'equency input by the user. The natural

frequency is typica]y set to 1 for most runs of the simulator.

3.3 Robot Model

The robot simulation takes the computed torque from the sim-

ulated host computer and determines the resulting four robot

angle accelerations based on the equation:

_= [.,_:t]-'__-[.,fl]-q&). (4)

Here, [_/] and _r are the inertia matrix and Coriolis and cen-

trifugal torque vector as before but are now based on the actual

robot angles instead of the sensed angles. The matrices have

also been injected with a small constant error to simulate mod-

eling inaccuracies.

The joint angle, 0, and its first derivative are estimated by the

equations:

0, = 0,_, + (_xt)/_. (5)

e_= 0,_, + (z,t)0,. (6)

If a motor failure has occurred, 0 and 0 are set to zero to simulate

the effects of a locked motor. The position thus remains con-

stant. Only the locked motor is currently simulated, but other

failure modes could result in runaway motors or free-spinning

motors.

The robot's position, velocity, and acceleration calculated in this

procedure are sent to the sensor routines. The robot position

is Mso sent to the graphics simulator which displays the motion

on the screen. This is the same graphics program used by the

Trick simulation package.

3.4 Fault Detection Capabilities

3.4.1 Failure Modes

If a sensor breaks and the failure goes undetected, the host com-

puter will be performing its calculations using erroneous infor-

mation. In this simulator, the encoders break in a frozen mode

continuously reporting the last value read before the failure.

The tachometers fail by continuously reporting zero velocities

and thus constant positions. With these failure modes, the host

sees the error between the sensed angle and the desired angle

grow for the joint with the faulty sensor, and the control equa-

tions increase the appropriate output torque to the robot to try

and compensate for the error. The joint with the faulty sensor

swings wildly off course because the host keeps trying harder

and harder to get the broken sensor value to match the de-

sired value. Since the calculations for all the joints are based on

knowledge of where the other joints are located, all of the other

output torques are also computed incorrectly and the joints all

stray from their desired paths.

When a motor fails, it locks in position and the joint is then

unable to move. If a motor failure goes undetected, the sensors

are still reading the correct information. In reality, the motor

failure would probably result in a sensor failure as well, but the

result would still be that both sensors are reporting a constant

joint angle. The control equations try to push the broken joint

closer to the desired value but the frozen motor does not respond

to the torques. Since the sensors are still reporting the actual

position of the joint, all the other calculations are based on

correct data and the other joints can continue with their normal

motions. The plan nmst be modified, however, to get the end

effector to its desired location.

3.4.2 Thresholds

These two undetected failures reveal the importance of get-

ting accurate sensor readings and of detecting a sensor failure

quickly. A frozen nmtor is not as critical a failure in most cases

and can be dealt with at a more leisurely pace. Since the sen-

sors are not perfectly accurate, an acceptable threshold for the

error between sensor reading and desired value must be chosen.

Unfortunately, even during normal operation, the error between

the actual angle and the desired angle can be relatively large es-

pecially at the beginning of a run before the controller has had

time to bring the error under control. Choosing the maximum

error found during a failure-fl'ee run results in a threshold that is

so large, it may take several time steps to notice the error fl'om

a broken sensor. By the time the failed sensor is detected, the

robot controller has already been infected with the erroneous

information and the robot is either off course or has damaged

itself.

Fortunately, the error between the angles recorded by the two

sensors during normal operation is very small even after in-

tegrating the tachometer reading to get the angular position.

Modeling errors and errors induced by unpredicted loads affect

both sensors in a similar manner. Thus, a tight threshold can

be chosen for a comparison of the two sensed positions. If this

threshold is exceeded, the fault detection software assumes that

one of the sensors has failed and appropriately chooses one as

the working sensor fl'om which to take the recorded data. The

larger thresholds from the typical error between the sensed and
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desired angles are still monitored, however. The large thresholds

provide a means of checking for a motor failure.

The pseudo-code for these checks is reproduced below. The

angle 06 and its derivatives are the desired values. The variables

Or, Or, and 0t are the values derived from the tachometer reading.

The results based on the encoder are 0r, 0e, and /_. Finally, 0

and its derivatives are the values sent to the robot controller.

If ((encoder working) and (tachometer working)){

0 = 0_, O = Ot, O = Ot

If (([0t - 0_[) >= threshold){

if (encoder working){

tachometer = failed

}else{

encoder = failed

o = o. o = _, g =//,
}

}else{

if ((]0a - Ot]) >= tachometer-threshold)

tachometer = failed

if ((106 - 0_1) >= encoder-threshold)

encoder = failed

)
)
If ((tachometer == failed) and (encoder != failed)){

if ((]06 - 0r[) < encoder-threshold){

o=o,,o=oo,_=_o
)else{

encoder = failed

motor = failed

send stop motor signal to robot

)
)
If ((encoder = = failed) and (tachometer != failed)){

if (([06 - Ot[) < tachometer-tl, reshold){

0 = O. 0 = L,/_ =/_e
)else{

tachometer = failed

motor = failed

send stop motor signal to robot

}
)

Choosing which sensor has failed and which is still workingwhen

the tight tolerance is exceeded is the most difficult task. Intu-

itively, one would expect the sensor with a reading closer to

the desired value to be the working sensor and would switch to

obtaining all the information from that sensor. However, ex-

perience has shown that the fault detection software choses the

correct sensor only when the desired values are increasing. If

the desired angles are decreasing in value, it consistently picks

the failed sensor as the working one.

This problem is a result of the time it takes the controller to

bring the errors under control and the failure modes for the sen-

sors. Both the encoders and the tachometers fail by reporting

a constant angular position either directly or by integration of

a zero velocity. Filet, let us assume the sensors always read

less than the desired value. If a sensor fails and gets stuck at a

specific value while the desired values are increasing, the error

will grow and the fault detection routine should take the an-

gle information from the sensor that reads closer to the desired

value. However, if the sensor fails while the desired values are

decreasing, the desired values are approaching the failed value.

The error starts decreasing and the surviving sensor is often the

one whose absolute error is larger. The opposite relationships

hold if both sensors are reading values greater than the desired

angle. A failed sensor would then have the smaller error dur-

ing an increase in desired angles and the larger error during a

decrease in desired angles.

The various sensor failure situations that arise in the presence

of increasing desired values are listed in Table II. The variable

dt is the tachometer error or the absolute difference between

the desired value and the tachometer value. Similarly, de is

the encoder error. The bold faced entries are the actual sensor

failures which occur given the specified orderings of the.angles

and sensed angle errors. The entries enclosed in parentheses

are the action taken by our current fault detection algorithm

which takes into account the ordering situations described in the

preceding paragraph. The intuitive, more naive algorithm would

always choose the encoder as the survivor for the case where

dt> de and would always choose the tachometer otherwise.

The table for decreasing desired values would look similar to

Table II but would shut down the joint in the opposite column.

Table II: Failure Situations and Detection Actions for

Increasing Desired Angles

Angle

Ordering

Error Ordering

dt> de de >dt

06 < Ot,O¢ Eneoder Failed Tach Failed

(choose tach) (choose encoder)

Or, Or < 06 Tach Failed Encoder Failed

(choose encoder) (choose tach)

8t < 84 < 0e Encoder or Tach Encoder Failed

(Shut Down Joint) (choose tach)

Or < 06 < 0_ Tach Failed Eneoder or Taeh

(choose Encoder) (Shut Down Joint)

By checking whether the desired values are increasing or de-

creasing and pe,forming the appropriate comparisons to choose

the surviving sensor, the fault detection algorithm can correctly

isolate the failed sensor in 75% of the cases instead of 50% for

the naive algorithm. The remaining 2570 of the cases are incon-

clusive as either sensor failure could produce the same sensed

angle ordering for the given order of the angles. In the case

where 0e < 8d < Ot and 0a is increasing, for example, an encoder

failure would result in the encoder error growing larger while the

tachometer error still tracks the desired value. Thus, de would

most likely be greater than dr. However, if ti_e tachometer failed,

the desired value approaches the static tachometer value, and

d, would again be greater than dt (assuming the angle ordering

does not change). Both failures result in the same ordering of

the sensor errors. The algorithm shuts down the appropriate

joint to avoid choosing the wrong sensor which would feed er-

roneous information to the controller and cause other joints to

swing off course.
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The fault detection algorithm thus provides the robot with fault

tolerance of most single sensor failures by obtaining the angle

information solely from the surviving sensor. Through tile de-

tection and isolation of a sensor failure, the algorithm is able to

make use of the redundant information provided by the other

sensor. When the*algorithm cannot isolate the failure, it still

protects the system from the hazards of faulty sensor readings.

In general, our simple fault detection simulator is capable of

detecting for each joint a single sensor failure, a single sensor

failure followed by a motor failure, or a motor failure. The

simulator will eventually detect a second sensor failure and will

catch the single failures it has missed, but it has allowed enough

erroneous sensor readings through to the controller that other

joints have been knocked off course and fall as well. In order

to improve the fault detection algorithm, we must switch from

the hard-coded voting scheme presented above to other forms of

analytical redundancy which use filters [12,17], adaptive thresh-

olds [8], or parity relations [5]. Willsky gives a thorough review

of the various methods of analytical redundancy in [17] and [5].

Unfortunately, the amount of uncertainty and modeling errors

present in most robotic control systems makes several of the

proposed methods impractical. The generation of residuals us-

ing parity relations is one example of a method which would

be unsuitable for robotic applications [8]. Most of the work in

analytical redundancy has been focused on failure detection in

aircraft, power generation system and other mechanical systems

[13]. The algorithms for these systems will need to be modified

for robotics applications.

4 Conclusions and Future Work

In this paper we have presented new results in fault tree analysis

and fault detection for robot manipulatol.'S. This research sets

the stage for significantly enhanced activity ia fault tolerance for

robotics. Once a failure can be detected and isolated, a fault

tolerant expert system like Robo-MEDIC can proceed with the

appropriate actions to make use of the e:,:isting robot structure,

redundancy, and alternate paths. There already exist a variety

of computer fault tolerance schemes which can provide a starting

point for creating these structurally indel)endent robotic fault

tolerance algorithms.

The fault tree analysis for the Riceobot has proven useful in

pointing out some trouble spots for fault detection and fault

tolerance. Even without a quantitative analysis, the importance

of certain components and the severity of different failures are

revealed in the fault trees. For robots, the good health of the

internal sensors is shown to be extremely desirable. Erroneous

data from even one sensor at a joint can cause the whole robot

to deviate dra._tically from its course if the failure is not de-

tected quickly. Without the sensors, the robot also loses much

of its capability to detect faults. Developing methods for early

detection of sensor malfunctions thus has a high priority in this

research.

By simulating relatively simple fault detection situations, we

are gaining a better understanding of how to satisfy this need

for early detection. Our simuIator has shown that to avoid false

alarms due to modeling errors and noise we are forced to im-

plement large thresholds which let some faihHes go undetected

for too long. Other relationships must be developed concerning

the information available in order to improve the fault detection

algorithms. We will embed the algorithms in our expert system

and integrate the simulation into the Trick simulation package

to create a more flexible fault detection and faul_ tolerance sim-

ulator.

The analysis of the fault trees in this paper will be useful in

creating fault tolerant algorithms. Through an analysis of the

structures, fault tolerance schemes can be developed which will

attempt to maintain the health of the internal nodes in the

presence of failures in their children. These algorithms will rely

only on the available components or structure of the robot and

can be developed fl-om the knowledge amassed during the fault

detection simulations. The fault tolerant algorithms will also be

tested on the enhanced Trick robotic simulation package.
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